Wednesday, 31 December 2014

Have You Ever Heard To Web Scraping Expert Use Business Information?

Have you ever heard of "data scraping?" Scaling of the use of information and data scraping technology made his fortune many a successful trader is not new technology. Sometimes website owners automated harvesting of your data can not be happy with sitting

Fortunately there is a modern solution to this problem. Proxy data scraping technology solves the problem by using proxy IP addresses. Scraping data each time you run the program, organized the evacuation of a website, the website thinks that it comes from a different IP address. For website owners, worldwide only a short period of increased traffic from the proxy data scraping sounds.

Now you might be asking yourself: "Can the technology proxy data scraping project?" Certainly better than the choice is dangerous and unreliable (but) free public proxy servers.

There are literally thousands of the world that is quite easy to free proxy servers are all on. But the trick is finding them. Many sites list hundreds of servers, but open to find, and the protocol perseverance, trial and error, works for one of the first lessons you something about server to server, or do not know what activities are going for. A public proxy requests or sensitive data transmitted through a bad idea.

A less risky scenario for proxy data for scraping a rotating proxy connection goes through many private IP addresses to hire.

Scrape data from the software-only website is the proven process of extracting data from the Web. Offer the best of the web software to extract data. We have the expertise and knowledge in web data extraction, image, display, email extract, eliminate services, data mining and web intervene to eliminate.

For example, many companies based on their own needs, in particular, helped to find the data.

Data collection

Generally, data, information, automated computer programs for processing by the appropriate structures transmission. Such formats and protocols are usually strictly structured, well-documented, easily decompose, and confusion to a minimum. Very often, these transmissions are not human readable.

Tractor unit that automatically Extractor is an email from a reliable source that the e-mail ID helps to remove. This is fundamentally different than web pages, HTML files, text files or other format, business services contacts duplicate email addresses without.

A web spider is a computer program that a methodical, automated or surf the World Wide Web in a systematic way. Especially the many sites in the search engines, up-to-date information, as a means to quickly use.

Proxy data scraping technology solves the problem by using proxy IP addresses. Every time your data scraping program is a production of a website, the website that comes from a different IP address. The owner of this website, proxy data from around the world in an increase in traffic looks exactly like scraping the short term.

Now you might be asking yourself, "my project where I can get the data scraping proxy technology?" "Do it yourself" solution, but unfortunately, there is no need to call. Consider hosting the proxy server you choose to rent, but this option is quite pricey, but definitely better than the alternative is incredibly dangerous (but) free public proxy server.

Source:http://www.articlesbase.com/outsourcing-articles/have-you-ever-heard-to-web-scraping-expert-use-business-information-6250856.html

Saturday, 27 December 2014

What Kind of Legal Problems Can Web Scraping Cause

Web scraping software is readily available and has been used by many for legitimate purposes. It has also been used for illegal purposes. A website that engages in this practice should know the legal dangers of the activity.

Related Articles

Black Hat SEO Popular Techniques

General Knowledge- VII

The idea of web scraping is not new. Search engines have used this type of software to determine which results appear when someone conducts a search. They use special software software to extract data from a website and this data is then used to calculate the rankings of the website. Websites work very hard to improve their ranking and their chance of being found by anyone making a search. This use of this practice is understood and is considered to be a legitimate use for the software. However, there are services that provide web scraping and screen scraping prevention services and help the webmaster to remain safe from the attack of bad bots.

The problem with duplicacy is that it is often used for less than legitimate reasons. Since the software responsible can collect all sorts of data from websites and store the information that is collected, it represents a danger to anyone who might be affected by it. The information that can be collected can be used for many practices that are not so legitimate and may even be illegal. Anyone who is involved in this practice of content duplicacy should be aware of the legal issues implicated with this practice. It may be wise for anyone who has a website to find ways to prevent a site from being scraped or to use professional services to block site scraping.

Legal problems

The first thing to worry about, if you have a website or are using web scraping software, is when you might run into legal problems. Some of the issues that web scraping can cause include:

•    Access. If the software is used to access sites it does not have the right to access and takes information that it is not entitled to, the owner of the web scarping software may find themselves in legal trouble.

•    Re-use. The software can collect and reuse information. If that information is copyrighted, that might be a legal problem. Any information that is reused without permission may create legal issues for anyone who uses it.

•    Robots. Some states have enacted laws that are designed to keep people from using scraping robots. These automatically search out information on websites and using them may be illegal in some states. It is up to the user of the web scraping software to comply with any laws in the state in which they are operating.

Who is Responsible

The laws and regulations surrounding this practice are not always clear. There are many grey areas that allow this practice to occur. The question is, who is responsible for determining whether the use of web scraping software is legal?

Websites collect the information, but they may not be the entity using the web scraping software. If they are using this type of software, it is not always enough to inform the website's visitors that this practice is occurring. Putting this information into the user agreement may or may not protect the website from legal problems.

It is also partly the responsibility of a site owner to prevent a site from being scraped. There is software that can be used that will do this for a website and will keep any information that is collected safe and secure. A website may or may not be held legally responsible for any web scraper that is able to collect information they have. It will depend on why the data was collected, how it was used, who collected it, and whether precautions were taken.

What to expect

The issue of content copying and the legal issues surrounding it will continue to evolve. As more courts take on this issue, the lines between legal and illegal web scraping will become clearer. Many of the cases that have been brought to court have occurred in civil court, although there are some that have been taken up in a criminal court. There will be times when such practice may actually be a felony.

Before you use spying software, you need to realize that the laws surrounding its use are not clear. If you operate a website, you need to know the legal issues that you may face if scraping software is used on your website. The best step is to use the software available to protect your website and stop web scraping and be honest on your site if web scraping is used.

Source: http://www.articlesbase.com/technology-articles/what-kind-of-legal-problems-can-web-scraping-cause-6780486.html

Monday, 22 December 2014

Scraping Fantasy Football Projections from the Web

In this post, I show how to download fantasy football projections from the web using R.  In prior posts, I showed how to scrape projections from ESPN, CBS, NFL.com, and FantasyPros.  In this post, I compile the R scripts for scraping projections from these sites, in addition to the following sites: Accuscore, Fantasy Football Nerd, FantasySharks, FFtoday, Footballguys, FOX Sports, WalterFootball, and Yahoo.

Why Scrape Projections?

Scraping projections from multiple sources on the web allows us to automate importing the projections with a simple script.  Automation makes importing more efficient so we don’t have to manually download the projections whenever they’re updated.  Once we import all of the projections, there’s a lot we can do with them, like:

•    Determine who has the most accurate projections
•    Calculate projections for your league
•    Calculate players’ risk levels
•    Calculate players’ value over replacement
•    Identify sleepers
•    Calculate the highest value you should bid on a player in an auction draft
•    Draft the best starting lineup
•    Win your auction draft
•    Win your snake draft

The R Scripts

To scrape the projections from the websites, I use the readHTMLTable function from the XML package in R.  Here’s an example of how to scrape projections from FantasyPros:

1 2 3 4 5 6 7 8    

#Load libraries

library("XML")

#Download fantasy football projections from FantasyPros.com

qb_fp <- readHTMLTable("http://www.fantasypros.com/nfl/projections/qb.php", stringsAsFactors = FALSE)$data

rb_fp <- readHTMLTable("http://www.fantasypros.com/nfl/projections/rb.php", stringsAsFactors = FALSE)$data

wr_fp <- readHTMLTable("http://www.fantasypros.com/nfl/projections/wr.php", stringsAsFactors = FALSE)$data

te_fp <- readHTMLTable("http://www.fantasypros.com/nfl/projections/te.php", stringsAsFactors = FALSE)$data

view raw FantasyPros projections hosted with ❤ by GitHub

The R Scripts for scraping the different sources are located below:

1.    Accuscore
2.    CBS - Jamey Eisenberg
3.    CBS – Dave Richard
4.    CBS – Average
5.    ESPN
6.    Fantasy Football Nerd
7.    FantasyPros
8.    FantasySharks
9.    FFtoday
10.    Footballguys – David Dodds
11.    Footballguys – Bob Henry
12.    Footballguys – Maurile Tremblay
13.    Footballguys – Jason Wood
14.    FOX Sports
15.    NFL.com
16.    WalterFootball
17.    Yahoo

Density Plot

Below is a density plot of the projections from the different sources:Calculate projections

Conclusion

Scraping projections from the web is fast, easy, and automated with R.  Once you’ve downloaded the projections, there’s so much you can do with the data to help you win your league!  Let me know in the comments if there are other sources you want included (please provide a link).

Source:http://fantasyfootballanalytics.net/2014/06/scraping-fantasy-football-projections.html

Tuesday, 16 December 2014

Online Data Entry and Data Mining Services

Data entry job involves transcribing a particular type of data into some other form. It can be either online or offline. The input data may include printed documents like Application forms, survey forms, registration forms, handwritten documents etc.

Data entry process is an inevitable part of the job to any organization. One way or other each organization demands data entry. Data entry skills vary depends upon the nature of the job requirement, in some cases data to be entered from a hard copy formats and in some other cases data to be entered directly into a web portal. Online data entry job generally requires the data to be entered in to any online data base.

For a super market, data associate might be required to enter the goods which have sold in a particular day and the new goods received in a particular day to maintain the stock well in order. Also, by doing this the concerned authorities will get an idea about the sale particulars of each commodity as they requires. In another example, an office the account executive might be required to input the day to day expenses in to the online accounting database in order to keep the account well in order.

The aim of the data mining process is to collect the information from reliable online sources as per the requirement of the customer and convert it to a structured format for the further use. The major source of data mining is any of the internet search engine like Google, Yahoo, Bing, AOL, MSN etc. Many search engines such as Google and Bing provide customized results based on the user's activity history. Based on our keyword search, the search engine lists the details of the websites from where we can gather the details as per our requirement.

Collect the data from the online sources such as Company Name, Contact Person, Profile of the Company, Contact Phone Number of Email ID Etc. are doing for the marketing activities. Once the data is gathered from the online sources into a structured format, the marketing authorities will start their marketing promotions by calling or emailing the concerned persons, which may result to create a new customer. So basically data mining is playing a vital role in today's business expansions. By outsourcing the data entry and its related works, you can save the cost that would be incurred in setting up the necessary infrastructure and employee cost.

Source:http://ezinearticles.com/?Online-Data-Entry-and-Data-Mining-Services&id=7713395

Saturday, 13 December 2014

Local ScraperWiki Library

It quite annoyed me that you can only use the scraperwiki library on a ScraperWiki instance; most of it could work fine elsewhere. So I’ve pulled it out (well, for Python at least) so you can use it offline.

How to use
pip install scraperwiki_local
A dump truck dumping its payload

You can then import scraperwiki in scripts run on your local computer. The scraperwiki.sqlite component is powered by DumpTruck, which you can optionally install independently of scraperwiki_local.

pip install dumptruck
Differences

DumpTruck works a bit differently from (and better than) the hosted ScraperWiki library, but the change shouldn’t break much existing code. To give you an idea of the ways they differ, here are two examples:

Complex cell values
What happens if you do this?
import scraperwiki
shopping_list = ['carrots', 'orange juice', 'chainsaw']
scraperwiki.sqlite.save([], {'shopping_list': shopping_list})
On a ScraperWiki server, shopping_list is converted to its unicode representation, which looks like this:
[u'carrots', u'orange juice', u'chainsaw']
In the local version, it is encoded to JSON, so it looks like this:
["carrots","orange juice","chainsaw"]


And if it can’t be encoded to JSON, you get an error. And when you retrieve it, it comes back as a list rather than as a string.

Case-insensitive column names
SQL is less sensitive to case than Python. The following code works fine in both versions of the library.

In [1]: shopping_list = ['carrots', 'orange juice', 'chainsaw']
In [2]: scraperwiki.sqlite.save([], {'shopping_list': shopping_list})
In [3]: scraperwiki.sqlite.save([], {'sHOpPiNg_liST': shopping_list})
In [4]: scraperwiki.sqlite.select('* from swdata')

Out[4]: [{u'shopping_list': [u'carrots', u'orange juice', u'chainsaw']}, {u'shopping_list': [u'carrots', u'orange juice', u'chainsaw']}]

Note that the key in the returned data is ‘shopping_list’ and not ‘sHOpPiNg_liST’; the database uses the first one that was sent. Now let’s retrieve the individual cell values.

In [5]: data = scraperwiki.sqlite.select('* from swdata')
In [6]: print([row['shopping_list'] for row in data])
Out[6]: [[u'carrots', u'orange juice', u'chainsaw'], [u'carrots', u'orange juice', u'chainsaw']]

The code above works in both versions of the library, but the code below only works in the local version; it raises a KeyError on the hosted version.

In [7]: print(data[0]['Shopping_List'])
Out[7]: [u'carrots', u'orange juice', u'chainsaw']

Here’s why. In the hosted version, scraperwiki.sqlite.select returns a list of ordinary dictionaries. In the local version, scraperwiki.sqlite.select returns a list of special dictionaries that have case-insensitive keys.

Develop locally

Here’s a start at developing ScraperWiki scripts locally, with whatever coding environment you are used to. For a lot of things, the local library will do the same thing as the hosted. For another lot of things, there will be differences and the differences won’t matter.

If you want to develop locally (just Python for now), you can use the local library and then move your script to a ScraperWiki script when you’ve finished developing it (perhaps using Thom Neale’s ScraperWiki scraper). Or you could just run it somewhere else, like your own computer or web server. Enjoy!

Source:https://blog.scraperwiki.com/2012/06/local-scraperwiki-library/

Thursday, 4 December 2014

Web scraping tutorial

There are three ways to access a website data. One is through a browser, the other is using a API (if the site provides one) and the last by parsing the web pages through code. The last one also known as Web Scraping is a technique of extracting information from websites using specially coded programs.

In this post we will take a quick look at writing a simple scraperusing the simplehtmldom library. But before we continue a word of caution:

Writing screen scrapers and spiders that consume large amounts of bandwidth, guess passwords, grab information from a site and use it somewhere else may well be a violation of someone’s rights and will eventually land you in trouble. Before writing  a screen scraper first see if the website offers an RSS feed or an API for the data you are looking. If not and you have to use a scraper, first check the websites policies regarding automated tools before proceeding.

Now that we have got all the legalities out of the way, lets start with the examples.

1. Installing simplehtmldom.

Simplehtmldom is a PHP library that facilitates the process of creating web scrapers. It is a HTML DOM parser written in PHP5 that let you manipulate HTML in a quick and easy way. It is a wonderful library that does away with the messy details of regular expressions and uses CSS selector style DOM access like those found in jQuery.

First download the library from sourceforge.  Unzip the library in you PHP includes directory or a directory where you will be testing the code.

Writing our first scraper.

Now that we are ready with the tools, lets write our first web scraper. For our initial idea let us see how to grab the sponsored links section from a google search page.

There are three ways to access a website data. One is through a browser, the other is using a API (if the site provides one) and the last by parsing the web pages through code. The last one also known as Web Scraping is a technique of extracting information from websites using specially coded programs.

In this post we will take a quick look at writing a simple scraperusing the simplehtmldom library. But before we continue a word of caution:

Writing screen scrapers and spiders that consume large amounts of bandwidth, guess passwords, grab information from a site and use it somewhere else may well be a violation of someone’s rights and will eventually land you in trouble. Before writing  a screen scraper first see if the website offers an RSS feed or an API for the data you are looking. If not and you have to use a scraper, first check the websites policies regarding automated tools before proceeding.

Now that we have got all the legalities out of the way, lets start with the examples.

1. Installing simplehtmldom.

Simplehtmldom is a PHP library that facilitates the process of creating web scrapers. It is a HTML DOM parser written in PHP5 that let you manipulate HTML in a quick and easy way. It is a wonderful library that does away with the messy details of regular expressions and uses CSS selector style DOM access like those found in jQuery.

First download the library from sourceforge.  Unzip the library in you PHP includes directory or a directory where you will be testing the code.

Writing our first scraper.

Now that we are ready with the tools, lets write our first web scraper. For our initial idea let us see how to grab the sponsored links section from a google search page.

Source: http://www.codediesel.com/php/web-scraping-in-php-tutorial/